Intensive monitoring to develop a water and nitrogen balance for a constructed tidal stream

J. Randall Etheridge, François Birgand, Michael R. Burchell II

Restoration Goals

- Improve water quality in the North River
- Restore habitat
- Provide design guidance for future salt marsh projects in coastal North Carolina

Research Objectives

- Quantify the ability of a restored salt marsh to dissipate excess nutrients
- Quantify the timing and kinetics of nutrient dissipation and/or release
- Correlate the dissipation and/or release of nutrients to the type of organic matter

Methods

- Continuous nutrient mass balance between inlet and outlet
- Qualify nature of organic matter using fluorescence measurements

Methods

- Continuous nutrient mass balance between inlet and outlet
- Qualify nature of organic matter using fluorescence measurements

Flow Monitoring in a Tidal Stream

- Cannot use normal rating curve due to bidirectional flow
- Flumes serve as a constant cross section – cross section area measurement creates the most error in flow monitoring

Continuous Water Quality Monitoring

- Monitored using **UV-visual** spectrophotometer placed in the stream

Absorption	
spectrum and	The second live
parameters	
measured every	3
15 minutes	
IC & A O'S	

Parameter	Maximum	Resolution
NO ₃ -N	70 mg/L	0.1 ±mg/L
TOC	150 mg/L	0.2 ±mg/L
DOC	90 mg/L	0.2 ±mg/L
Turbidity	1400 FTU	1.3 FTU

Challenges of Continuous Water Quality Monitoring

- Calibration
- Preventing/reducing window fouling
- Solar power

Future Research

- Continuously monitor:
 - DOC
 - pH
 - Conductivity/Salinity
 - Dissolved Oxygen
 - DOM Fluorescence
- Gas fluxes

Acknowledgements

- North Carolina Coastal Federation
- United States Environmental Protection Agency
- North Carolina Sea Grant/North Carolina Water Resources Research Institute
- North Carolina Ecosystem Enhancement Program
- NSF Graduate Research Fellowship Program
- Field Installation:
 - Spencer Davis
 - Brad Smith
 - Yo-Jin Shiau
 - Guillaume Lellouche

- Collaborators:
 - Dr. Chris Osburn NCSU Marine, Earth, & Atmospheric Sciences
 - Molly Mikan NCSU Marine, Earth, & Atmospheric Sciences
 - Dr. Ken Krauss USGS National Wetlands Research Center
 - Nicole Cormier USGS National Wetlands Research Center
 - Rebecca Moss
 USGS National Wetlands Research Center
- Others:
 - Phil Harris (Electronics)
 - Kris Bass (Installation and site design)
 - Evan Corbin (Previous research)

