# Benefits and challenges of continuous flow and nitrogen monitoring in a restored salt marsh in North Carolina

J. Randall Etheridge, François Birgand, Michael R. Burchell II











#### **Restoration Goals**

- Improve water quality in the North River
- Restore habitat
- Provide design guidance for future salt marsh projects in coastal North Carolina











#### **Research Questions**

- Can continuous monitoring be used to quantify the ability of a restored salt marsh to retain excess nutrients?
- Are there seasonal, daily, or tidal trends in nutrient release or retention?
- Is there a relationship between nutrient retention or release and the type of organic matter present in the stream?







#### Research Questions

Can continuous monitoring be used to quantify the ability of a restored salt marsh to retain excess nutrients?

- Are there seasonal, daily, or tidal trends in nutrient release or retention?
- Is there a relationship between nutrient retention or release and the type of organic matter present in the stream?







### Research Objectives

- Quantify the ability of a restored salt marsh to dissipate excess nutrients
- Quantify the timing and kinetics of nutrient dissipation and/or release
- Correlate the dissipation and/or release of nutrients to the type of organic matter









# Flow Monitoring in a Tidal Stream

- Cannot use normal rating curve due to bidirectional flow
- Flumes serve as a constant cross section – cross section area measurement creates the most error in flow monitoring















## **Continuous Water Quality Monitoring**

 Monitored using UV-visual spectrophotometer placed in the stream

 Parameter
 Maximum
 Resolution

 NO<sub>3</sub>·N
 70 mg/L
 0.1 ±mg/L

 TOC
 150 mg/L
 0.2 ±mg/L

 DOC
 90 mg/L
 0.2 ±mg/L

 Turbidity
 1400 FTU
 1.3 FTU

 Absorption spectrum and parameters measured every 15 minutes

























# Challenges of Continuous Water Quality Monitoring

- Preventing/reducing window fouling
- Calibration
- Solar power



# What We Hope to Accomplish

- Calculate the amount of nitrate entering or leaving the marsh every 15 minutes
- Minimize sources of error
- Use a long-term mass balance to determine the mass of nitrate being retained or released by the marsh

# STAIN STAIN



#### Acknowledgements

- North Carolina Coastal Federation
- United States Environmental Protection Agency
- North Carolina Sea Grant/North Carolina Water Resources Research Institute
- North Carolina Ecosystem Enhancement Program
- NSF Graduate Research Fellowship Program

- Equipment and Field Help:
  - Brad Smith
  - Spencer Davis
  - Yo-Jin Shiau
  - Camille Langlais
  - Guillaume Lellouche
  - Phil Harris
  - Kris Bass
  - Evan Corbin
- Collaborators:
  - Dr. Chris Osburn
  - Molly Mikan
  - Dr. Ken Krauss
  - Nicole Cormier
  - Rebecca Moss







