

# The Short-term Response of Nutrient Loads to an Agricultural Stream Restoration in Coastal Plain of North Carolina

Department of Biological & Agricultural Engineering

Qianyu Hang (qhang@ncsu.edu); François Birgand, Cyrus Belenky, Chiao-Wen Lin Department of Biological and Agricultural Engineering, North Carolina State University, Campus Box 7625, Raleigh, NC 27695-7625, USA

Billions of dollars have been spent on stream restoration, yet questions remain about its effectiveness for improving water quality, as many studies report either mixed success or lack the adequate data/methodological framework.



| Reference<br>Monitoring | <b>~ ~ </b>     | <b>← →</b>       |  |
|-------------------------|-----------------|------------------|--|
| Treatment<br>Monitoring |                 | <b>← →</b>       |  |
|                         | Pre-Restoration | Post-Restoration |  |

Lack adequate data and fair methodological framework

Comparison between low-frequency and highfrequency monitoring scheme

#### **Objectives:**

- Improve monitoring system and collect high-frequency hydro-chemical data;
- Quantify restoration effects on **nitrate and DOC loads** using paired-watershed method and double mass curve

#### Study Area:

A 2.2 km low-gradient agricultural ditch that ran approximately north to south through Claridge Nursery, Goldsboro. Three dominant land uses for the Canal's watershed are cropland (57%), forest (14%) and developed land (10%). The Canal underwent a priority 2 restoration, creating a new connected floodplain and meandering channel.



Conceptual diagram comparing channelized ditch during prerestoration (a) to restored two-stage ditch (b), and photographs depicting the pre-restored ditch (c) compared to the post-restored two-stage reaches (d)

Map of the study area

### Methodology:



| 1. | Trapezoidal Wooden Sections       |
|----|-----------------------------------|
| 2. | Time-paced Discrete Sampler (ISCO |
|    | Autosampler                       |
| 3. | Doppler Velocity Meter            |
| 4. | UV-Vis Spectrophotometers         |

| Equipment                       | Parameter                            | Purpose                         | Frequency  |
|---------------------------------|--------------------------------------|---------------------------------|------------|
| Manual Velocity<br>Meter        | Velocity, Stage                      | Flow rate<br>calibration        | 2 weeks    |
| Grab Sample                     | Sample Degradation                   | Degradation Study               | 2 weeks    |
| Discrete Sampler                | NH3, NOx, TKN, TSS,<br>DOC, TP, PO4, | Local calibration               | 14 hours   |
| Doppler Velocity<br>Meter       | Velocity, Stage                      | Flow rate<br>calculations       | 15 minutes |
| UV-Vis<br>Spectrophotomet<br>er | Absorbance Data                      | Cumulative load<br>calculations | 15 minutes |

Field site monitoring system set-up

| vionnoring Scheme |
|-------------------|
|-------------------|





Schematic approach for visualizing the bulk effect of stream restoration on nutrient loads



## Conclusions and Future Research:

High-resolution monitoring scheme helps generate more precise nutrient loads during pre- and postrestoration. It has been observed an dramatic short-term improvement of nitrate loads reduction after restoration. However, we do not know what processes or functions at play. Therefore, we are considering to further our research to:

- 1. Continue high-resolution monitoring and estimate **long-term restoration effects on nutrient and suspended sediment loads**;
- 2. Identify the drivers for the observed effects;
- **3. Derive additional guidelines of practices** which we will find to have contributed most to the overall restoration benefits and **monitoring scheme** for estimating restoration effects.