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The dependence structure of daily UK hydrological time series
Nicholas Howden1, Tim Burt1, Fred Worrall2, François Birgand1, Sebastian Gnann1, Ross Woods1

Introduction

The presence of dependence structure in hydrological time series is both
problematic (it prevents the use of standard statistical tools for analysis)
and useful (as it indicates a pattern in the data that may be predicted by
a model. The dependence structure determines several key
characteristics of the time series all of which relate to the way in which
the structure contributes to the variance as a function of the
autocorrelation function:

We use an analytical model to represent the dependence structure 
(non-randomness) in hydrological time series from the UK. We can 
then identify the variance of these series to mainly comprise four 
distinct components: quick, slow, seasonal and random noise.

This analytical model allows us to: 

1. Project the distribution of totals at larger timescales
• forecast stochastic averages

2. Identify change-points to a level of probability
• sensitive trend detection and attribution 

3. Identify the information content of observations
• define a time-domain alternative to the power spectrum

4. Demonstrate a robust flow decomposition technique
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Empirical probability distribution of
precipitation total in n consecutive
months based on the period 1888 to
1966 and on precipitation amounts
assessed over the Oxford area. The
curves show the probability of not
reaching the amounts specified by the
ordinates.

Theoretical probability distribution of
precipitation total in n consecutive
months based on the dependence
structure model for precipitation
amounts assessed over the Oxford area.

Example: Oxford (UK) Daily Precipitation 1827 - 2016 

Analytical model of the dependence structure
Project monthly and annual
distributions of P total

Forecast long-term P total distributions

Test for non-stationarity (trend) in the daily record

We can plot the cumulative deviations from mean daily rainfall (pre-1850), and look at the
probability that this has changed:
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Results show that, although there has been change, there is only an 80% probability of this
being significant, less than required by standard statistical tests for change.

The dependence structure tends to inflate the variance, as individual
measurements don’t provide unique information. This is represented by
the variance inflation factor:

The variance inflation factor calculated from:

where:

Standard experimental design

Treatment vs Control

Randomized bloc design

The value of integrated hydrological and biogeochemical indicators

Experiments are designed to find which treatments lead to statistically significant differences in outcomes

Example: Wheat Yield

These experiments are monitored using integrated indicators of responses to the treatments:
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Integrated indicators tend to smooth out variability
and amplify the mean. In the presence of short
memory, they also lead to the variance in the
integrated indicator being normally-distributed
which makes classical statistics more readily
applicable.

Simple numerical tests can show how
hydrological processes can be considered as
integrated indicators, which may enable
more sensitive measures of trend detection.

Example: River Thames Streamflow 1883 to 2015

Analytical model fitted to the autocorrelation of the Thames
streamflow data:

The contribution of different component frequencies to the
variance is usually determined using the power spectral density.
Here we can use our data to produce this, and produce a version
predicted by our analytical model:

And we can do the equivalent in the time domain using our new
approach:

Application for flow decomposition
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The three flow components
in UK river systems…
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