Sustainability of Biofuel Feedstock Production in Forestry Settings

New Biofuel Crop Study in Southeast USA

- Three research sites
- Four to five watersheds each
- Treatments include:
 - Pine plantation
 - Pine and switchgrass interplanting
 - Switchgrass only
 - Pine plantation with understory harvest
 - Mature forest
- Data collection began January 2010

Calhoun County, MS Carteret County, NC Greene County, AL

Matched Watershed Approach

- Similar adjacent watersheds
- Calibration period: 1 2 years in young Pine
- Control Watershed Typical pine mgmt.
- Treatment Watersheds
 Pine and switchgrass interplanting
 Switchgrass only
 Pine plantation with understory harvest
- Treatment period: 4 to 5 years
- Compare hydrology and water quality of control vs. treatment to determine effects

Site Instrumentation

- Weather station at each large watershed
- At each sub-watershed:
 - Flow monitoring structures
 - Stage recorders and Doppler velocity meter
 - Automatic sampler storm sampling
 - Sediment
 - Nutrients
 - Other forest chemicals used in switchgrass
 - Groundwater wells water level & WQ sampling
 - Carbon and Nitrogen sampling of soil and biomass

Additional Funding from US Dept. of Energy

More in-depth study of:

- Hydrology
- Nutrient cycling
- Carbon cycling
- Watershed model development

Additional Funding from US Dept. of Energy

More in-depth study to include:

- Biodiversity
- Soil Productivity and Stability
- Life Cycle Analysis (LCA)
- BMP Development and Guidance
- Economic Analysis

Cooperators

N. C. State University

Weyerhaeuser Company

Catchlight Energy LLC (CLE)

Virginia Tech

US Forest Service

National Council for Air and Stream Improvement (NCASI)

The Lenoir County Study Site: Experimental Treatments TO **T1 T3 T2** Traditional Pine. Reference **Traditional** Pine-Stand Pine, RR Switchgrass, RR **T5 T6 T4 T7 Switchgrass** Pine-Pine-Extra Flatbed Pine-Extra Flatbed Only Switchgrass, RI Row, RR Row. RI RR = residuals completely removed Plot size = 2-acre RI = residuals in place Each treatment = replicated 4 times

Monitoring

Hydrology

- Soil Moisture dynamics in the vadoze
 - automatic data recorder and logger
 - all layers in the soil profile
- Soil Temperature
 - automatic data recorder and logger
 - within 10 cm from the soil surface

Monitoring

Groundwater Quality

- Ground water sampling wells
 - 3 in the middle and 3 near the ditch
- Depths:
 - 0.6 0.9 m, 0.9 1.2 m, 1.8 2.1 m
- Parameters of interest
 - TKN, NH₄-N, NO₃-N, DON, DOC, Dissolved P, pH
- Frequency of sampling
 - bi-weekly
 - More frequent after fertilization

Monitoring

Nutrient Dynamics

- ☐ Field Data Collection Technique
- Sequential In-situ Incubation Technique (Raison et al., 1987; Robertson et al., 1999)
 - Soil cores incubated in PVC Pipes
 - In-situ in each sampling area
 - separate subsamples prepared for
 - Total N measurement
 - . N mineralization and nitrification
 - Denitrification
 - Total C
 - C Mineralization
 - . Moisture content and pH

New Methods for Detailed Time Series Measurement of Water Quality

Summary

 Evaluate the environmental effects of large-scale forest biofuel feedstock production and utilize these results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States.