NC STATE UNIVERSITY

Nitrate concentration-drainage flow (C-Q) relationship for a drained agricultural field in Eastern North Carolina Plain

Abstract

- High frequency measurements of water quality samples from drainage tiles provided a more in-depth view of hydrological and biochemical processes from an artificial drained agricultural field.
- We measured drainage flow and nitrate concentration from drainage tiles at an interval of 45 minutes during 2017.
- We investigated the relationship between nitrate concentration and drainage flow (C-Q) at an event basis and collected 14 events during the measurement period.
- We employed hysteresis metrics to classify the hysteresis patterns of selected events and identified the major category pattern of the events.

Hypotheses

- The measurement interval of 45 minutes is adequate for capturing rapid changes of the hydrograph and the chemograph characterizing flow and nitrate concentration for tile drainage.
- Hysteresis effects evidently exist in nitrate concentration and flow relationship from a drained agricultural field.

Site Description

- Research site:
 - Subsurface tile drained field in eastern North Carolina irrigated with swine lagoon effluent.
- Drainage flow:
 - V-notch weir + Campbell Scientific pressure transducers + CR200 dataloggers;
- <u>In-situ Nitrate(NO₃⁻) concentration:</u>
 - S::can multispectral water quality sensor;
- <u>Rainfall:</u>
 - Rain gauges and an adjacent weather station (35.84887°, -76.65058°);
- <u>Animal waster application measurement:</u>
 - ✤ A set of rain gauges in the field.

Fig. 2 Set up of S::can probe for in-situ nitrate measurement

Fig. 3 Animal waste application

Wenlong Liu (wliu4@ncsu.edu), Mohamed Youssef, Francois Birgand, George Chescheir, Bryan Maxwell, Shiying Tian

Metrics to characterize hysteresis patterns

a) Time series data b) Non-linear C-Q relationship

Fig. 4 The demonstration of non-linear C-Q relationship and associated hysteresis metrics. a) shows the time series data of drainage flow and nitrate concentration. b) is the plot of nitrate concentration against drainage flow

Fig. 5 Nitrate concentration-drainage flow (C-Q) relationship for all 14 events. Large plots present the time-series data of C-Q relationship. Small plots show the hysteresis loops for C-Q relationship; events started at blue dots and ended at dark-red dots.

- Hysteresis Index (HI):
 - Improved by Lloyd et al.
 - Quantifies the direction and strength of hysteresis loop.
- Flushing Index (FI):
- Developed by Vaughan et al.
 - Quantifies the concentration or dilution of nitrate at the rising limb.

Results

Legend

Two animal waste irrigation events: Nov. 2nd and Nov. 6th

12 precipitation events.

Hysteresis patterns of C-Q relationship

- C-Q relationship of 9 events the field;
- more data are needed.

- and nitrate, including:
 - Preferential flow
 - horizontally)

North Carolina State University, Biological and Agricultural Engineering, Raleigh, North Carolina, United States.

were classified as anti-clockwise loops with nitrate flushing from

HI < 0: drainage event with higher nitrate concentrations lagging than flow with initial lower nitrate concentrations;

 \Rightarrow FI > 0: drainage event with higher nitrate concentrations than from base flow.

Possible seasonal variations, but

Anti-clockwise + nitrate dilution Anti-clockwise + nitrate flushing

ockwise + nitrate flushir

Fig. 6 Classification of events at different seasons using hysteresis metrics. Labels in plots indicate the category of hysteresis patterns.

Potential reasons of hysteresis effects:

The lag between transportability and availability of drainage flow

Heterogeneous distribution of nitrate (vertically and

Antecedent conditions

Conclusions

Hysteresis effects were observed for nitrate concentrationdrainage flow relationship in tile drainage during events.

Most of the measured events were classified as anti-clockwise loops with nitrate concentration increasing during events.

• Further analysis is needed for seasonal variations and parameters that influence the hysteresis patterns.

Authors