Quantification and modeling of in-stream processes in forest impacted agricultural canals of the lower coastal plain

François Birgand¹, George M. Chescheir², R. Wayne Skaggs³ and J. Wendell Gilliam⁴

1. Objectives
- No accepted methods to describe and predict fate of nutrients in canals and streams
- Investigate the magnitude of the effects of in-stream processes in agricultural canals of the lower coastal plain
- Propose a modeling approach for quantifying nitrogen transformations in such canals

2. Methods
- Mass balance at the reach scale (1125 m long)
- Compare field results to transport modeling to derive an in-stream retention model for nitrogen

3. Mass balance
- Transformations = output – input – lateral contribution
- Lateral contributions monitored using nested GW wells for drainage flow calculations + weekly nutrient concentration in groundwater

4. Specially designed nutrient flux measurement stations
- Flow measured using Doppler flow meters in trapezoidal wooden section
- Nutrient concentrations obtained after analysis in the laboratory of samples collected at strategic times along the hydrographs
- 14-months of continuous data on flow and concentrations

5. 14 months of continuous flow and concentration data
- “Concentration effect” during flow events for NO³ (majority of the time), for TP and PO⁴, TSS
- “Dilution effect” during flow events for NH₄ ON (majority of the time), DOC and CI
- High DOC and NO₃ concentrations

6. Measurable retention and release of nutrients in the reach
- After correction with lateral contributions
- Reach as a sink for:
 - TP and PO⁴ (16.2% and 8.9% of input)
 - NO₃ and TN (5.5% and 3.1% of input)
- Reach as a source for:
 - ON and DOC (6.8% and 18.9% more than input)

7. Likely processes involved
- Macrophytes and algae uptake: no more than 20% of overall nitrate retention
- Most of nitrate disappearance attributed to benthic denitrification
- ON and DOC release attributed to export from benthic mineralisation

8. Using DUFLOW to calculate retention and release rates
- Use of modeling for predicting nutrient exports at the reach outlet without biogeochemical processes: transport modeling only
- Comparison between measured outfluxes and modeled ones:
 - Calculation of apparent rates of retention or release during identified periods of time
 - Release rates of ON, DOC and DTC over the winter flow period, with averages of 312 ±137, 11386 ±5707 and 11673 ±5801 mg/m³/d, respectively.
 - During active flow periods NO₃ retention varied between ca. 200 and 800 mg NO₃-N/m³/d. Maximal values: 1162 (late March 1999) and 3038 mg/m³/d (June 1999)

9. Correlation between nitrate concentration and instantaneous retention rates
- Proposition of a simple model:
 \[R = \beta \times \left[NO_3^- - N \right] \]
- R retention rate (mg NO₃-N/m⁴/d), p mass transfer coefficient (m/d)
- Estimation with our data: p = 0.3 m/d

10. Conclusion
- Mass balance approach pertinent for measuring in-stream processes in canals of the lower coastal plain
- Magnitude of retention and release at the reach scale over a 14-month period within measurement uncertainties
- Studied reach acted like a wetland with retention of P, TSS, and NO₃ and release of ON and DOC
- NO₃ retention rates measured correspond to the upper reported values
- Data revealed at the reach scale an apparent “diffusion”-like process for NO₃ disruption
- A simple nitrate retention model was proposed

Footnotes:
2. Dept. of Biol. and Ag. Eng., Box 7625, NC State, Raleigh, NC 27695-7625, USA
3. Dept. of Soil Science, Box 7619, NC State, Raleigh, NC 27695-7619, USA