NC STATE UNIVERSITY

Cemagref Measurement and modeling of denitrification in poorly drained soils of the lower coastal plain

François Birgand¹, François Giraud (deceased), George M. Chescheir², R. Wayne Skaggs² and J. Wendell Gilliam³

1: Cemagref - Parc de Tourvoie - 92163 Antony Cédex- France - françois.birgand@cemagref.fr - 2: Dept of Bio. and Ag. Eng., Box 7625 NCSU, Raleigh, NC 27695-7625, USA - 3: Dept of Soil Science, Box 7619 NCSU, Raleigh, NC 27695-7619, USA

1. Objectives

- Provide field r asurement references for soil budget modeling using DRAINMOD
- Calculate Denitrification constants and provide field measured values for Water Free Pore Space (WFPS) thresholds

2. Methods

- · Collect undisturbed soil cores in agricultural and forested soils down to 1.50 m deep
- Four sites: Forested and agricultural; \underline{DRY} (water table below 1.2 m) and WET (water table within 30 cm of the surface); 3
- Monitoring N₂O accumulation in incubation chamber headspace (acetylene inhibition technique)

3. Collection of undisturbed soil cores

Probe truck with hydraulic pump for smooth soil core probing

Undisturbed soil cores preserved in clear plastic sleeves before

4. Soil cores incubations

- · Acetylene inhibition technique
- Cores incubated at controlled temperature (on site T°C)
- · Head space sampled at regular intervals for analysis using GC

Different types of N2O accumulation in incubation chambers

- Denitrification rates usually measured after 24 hours of incubation
- Data show that N_2O production can be non linear and may reveal
 - Diffusion of C₂H₂ in denitrifying sites 6 hours after injection
- Nitrate and carbon depletion near denitrifying sites
- Denitrification rates taken as the maximum slope of the

6. Calculating denitrification rates

Requires an accurate measurement of chamber d space: used a self made gas picnometer

- $\mathbf{V} = (\mathbf{P}_0/\mathbf{h} \mathbf{1}) \times (\mathbf{V}_s \mathbf{h} \times \mathbf{S}/2) \mathbf{V}_t$
- Evaluation of N₂O amounts in gas and liquid phase using Bunsen coefficients
- Final rates expressed in kg NO₃/ha/day/layer using soil bulk density, core diameter and dry weight

7. Denitrification rate results

- · Dry forest soil: very low rates
- Seasonal pattern for all sites: usually higher in June
- Surface horizon denitrifies most for wet sites
- Not negligible denitrification rates deep in the soil profile for agricultural sites
- · Higher heterogeneity for wet sites than for dry ones

8. Denitrification modeling scheme used

• Determination of denitrification rates

• Denitrification rate computed in Drainmod (Brevé et al. 1997):

$$\Gamma_{den} = k_{den} \times e_m(i) \times e_t(i) \times [NO_3^-]$$

 \bullet where $\mathbf{K}_{\mathrm{den}}$ denitrification constant, \mathbf{e}_{t} temperature factor

where
$$\mathbf{K}_{\text{den}}$$
 denitrification constant, \mathbf{e}_{t} temperate $e_{m} = \left[\frac{\theta - \theta_{d}}{\theta_{s} - \theta_{d}}\right]^{2}$ $\left[\frac{\theta}{\mathbf{s}_{s}}$ soil water content \mathbf{e}_{d} saturated water content \mathbf{e}_{d} Threshold water content

Site		Kdea	extreme bounds	θ,
	Layer 1	2.33 [0.2 - 5.1]	[0.23 - 16.4]	0.81
Wet Forested site	Layer 2	0.55 [0.03 - 1.07]	[0.02 - 2.12]	0.6
	Layer 3	0.5		0.39
	Layer 1	0.38		0.68
Dry Forested site	Layer 2	0.17 [0.07 - 0.34]	[0.06 - 0.61]	0.4
	Layer 3	0.06 [0.01 - 0.07]	[0.01 - 0.08]	0.39
	Layer 1	3.75 [0.14 - 15.5]	[0.09 - 352]	0.47
Wet Agricultural site	Layer 2	1.87 [0.49 - 1.87]	[0.39 - 6.93]	0.37
	Layer 3	0.14 [0.01 - 0.19]	[0.007 - 0.4]	0.41
	Layer 1	7.10 ⁻³ [1.10 ⁻³ - 1.74.10 ⁻³]	[0 - 2.39.10 ⁻²]	0.53
Dry Agricultural site	Layer 2	1.44.10 ⁻³ [6.4.10 ⁻⁴ - 2.46.10 ⁻³]	[5.10 ⁻⁴ - 4.7.10 ⁻³]	0.5
	Layer 3	0.19 [0.01 - 0.62]	[6.9.10 ⁻³ - 6.3.10 ⁻¹]	0.43

9. Determination of moisture threshold values θ_d

- Graphical determination of the threshold point
- · Example in figure corresponds to layer 2 of dry forested site
- · Relatively high values compared to the literature

Site	Wet Forested site	Dry Forested site	Wet Agricultural site	Dry Agricultural site
Layer 1	0.8	0.6	0.6	0.4
Layer 2	0.85	0.7	0.75	0.7
Layer 3	0.8(?)	0.7	0.8	0.8

10. Conclusions

- Incubation method used to measure denitrification rates revealed unreported kinetics
- Reported rate values may thus be often underestimated
- Obvious seasonal pattern of denitrification
- Higher denitrification in agricultural soils than in forested
- Nitrate concentration in soils may be the main factor • Sizable denitrification down to 1.5 m under the soil surface
- Denitrification constant and threshold values estimated but with large range of values
- Punctual field measurements:
 - · Large spatial heterogeneity
 - What do they really represent?
 - pertinent as a support for conceptual and calibration factors in modeling?