NC STATE UNIVERSITY

Quantifying uncertainties in watershed nutrient loads: apportionment of uncertainty sources

François Birgand & Rafael Muñoz-Carpena

1

Monitoring water quality in agricultural watersheds

Sources of uncertainties when measuring nutrient loads

- Uncertainties on flow rates and cumulated flow
- Uncertainties associated with infrequent sampling
- Uncertainties due to the sampling location in the water column
- Uncertainties due to sample degradation between sampling and analysis
- Uncertainties of laboratory analyses

Birgand&Muñoz-Carpena

Optimizing Monitoring

• What should I be particularly careful about to lower uncertainties on loads and improve confidence in my results?

Sources of uncertainties when measuring nutrient loads

- Uncertainties on flow rates and cumulated flow
- Uncertainties associated with infrequent sampling
 - Uncertainties due to the sampling location in the water column
 - Uncertainties due to sample degradation between sampling and analysis
- Uncertainties of laboratory analyses

Birgand&Muñoz-Carpena

In a perfect world, perfect continuous data...

Video: daily sampling interval

Birgand&Muñoz-Carpena 7

Sampling interval: 6 days

Sampling interval: 10 days

Birgand&Muñoz-Carpena

Flow weighted average: least bad method

Birgand&Muñoz-Carpena

Uncertainties on flow

- Difficult to fully estimate
- Approach chosen:
 - Flow estimated using rating curves
 - Errors due to
 - o number of gauged points,
 - o hysteresis of the stage discharge relationship
 - Mathematical relationship chosen as rating curve

Video: 10 gauging points

Birgand&Muñoz-Carpena 13

Video: 26 gauging points

Video

Birgand&Muñoz-Carpena 15

Calculating cumulative uncertainty

Global Sensitivity Analysis (GSA)

Global Sensitivity/Uncertainty Analysis

Step 1: Screening (Morris Method)

• qualitative measure of importance (μ^*) and interaction (σ) of input factors

Used as a screening method to reduce number of important factors

Step 2: Variance Decomposition

$$V(Y) = V_1 + V_2 + ... + V_k + R$$

V(Y) – variance of output, V_i – variance due input factor X_i, k - nr of uncertain factors, R - residual

Birgand&Muñoz-Carpena

Simulations

- Reference data with continuous Q and WQ
- Errors on annual loads
- Variables
 - o NO₃, TP
 - Sampling frequency

Simulations

- Reference data with continuous Q and WQ
- Errors on annual loads
- Variables
 - o NO₃, TP
 - Sampling frequency
 - Number of gauged points
 - Type of rating curve

Birgand&Muñoz-Carpena 23

Simulations

- Reference data with continuous Q and WQ
- Errors on annual loads
- Variables
 - o NO₃, TP
 - Sampling frequency
 - Number of gauged points
 - Type of rating curve
 - o Lab errors: systematic (e.g. + 5%) or random (e.g. ±5%)

Conclusion

- The GSA approach very useful tool for uncertainties on nutrient loads
- Random lab errors weigh little on the overall uncertainties
- Errors due to the number of gauged points small
- Rating curve type very important
- Results may vary dramatically with watersheds and nutrients

■ Birgand&Muñoz-Carpena 27

