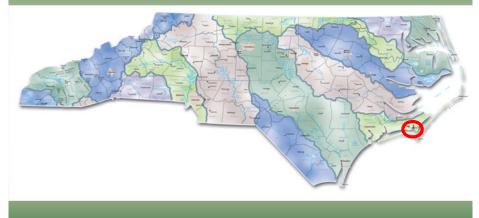
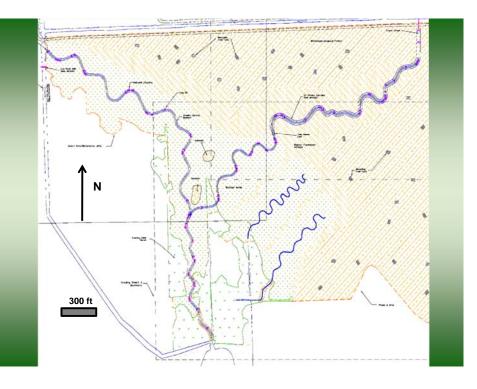
Continuously monitoring flow, carbon, and nitrogen in a restored North Carolina salt marsh


J. Randall Etheridge, Michael R. Burchell II, François Birgand

Site Location

Restoration Goals


- Improve water quality in the North River
- Restore habitat
- Provide design guidance for future salt marsh projects in coastal North Carolina

Construction

Restoration

Research Objectives

- Quantify the ability of a restored salt marsh to dissipate excess nutrients
- Quantify the timing and kinetics of nutrient dissipation and/or release
- Correlate the dissipation and/or release of nutrients to the type of organic matter

Method

- Continuous nutrient mass balance between inlet and outlet
- Sediment-water interface process kinetics experiments

Bie&

- Qualify nature of organic matter using fluorescence measurements
- water process

Method

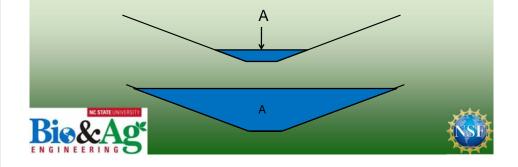
- Continuous nutrient mass balance between inlet and outlet
- Sediment-water interface process kinetics experiments
- Qualify nature of organic matter using fluorescence measurements

Upstream/Downstream Monitoring

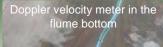
Flow Monitoring in a Tidal Stream

- Cannot use normal rating curve due to bidirectional flow
- Flumes serve as a constant cross section

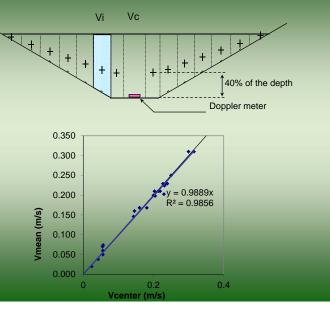
 cross section area measurement creates the most error in flow monitoring


Downstream flume between tides

Flow Calculations



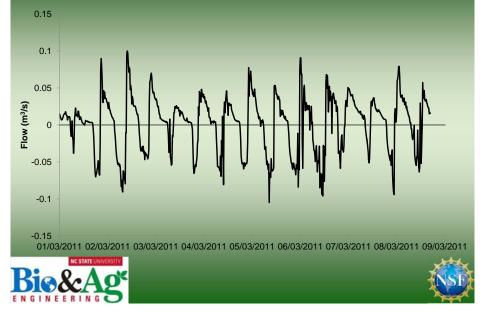
- Q: flow
- V: velocity
- A: cross-section area


Continuous Flow Monitoring

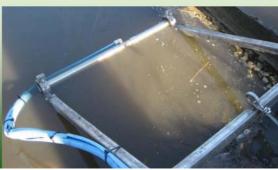
- Doppler velocity meter records velocity and water depth in flume
- Average velocity and water depth recorded every 15 minutes
- Use manual stream gaging to relate Doppler velocity to actual flow in the flume

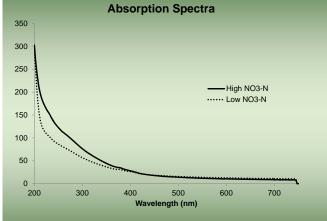
Flow Calibration

Flow Monitoring in a Tidal Stream


- One challenge presented in the marsh: high tide or water level above the flumes
- Solution: direct flow through the flume using impermeable fence

Downstream Flume

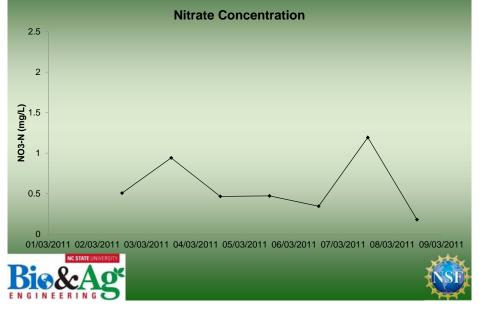

Downstream Flume Flow

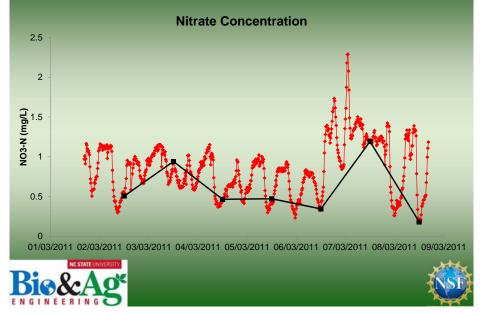

Continuous Water Quality Monitoring

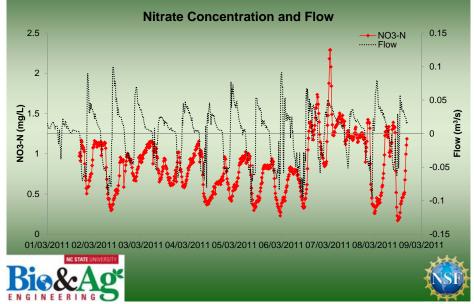
- Monitored using UVvisual spectrophotometer placed in the stream
- Absorption spectrum and parameters measured every 15 minutes

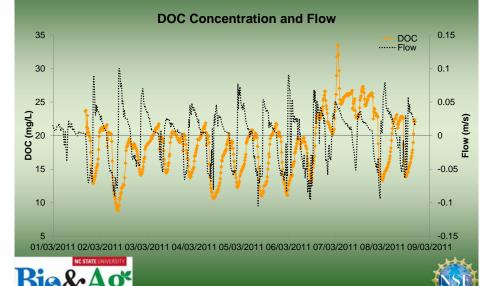
Parameter	Max (mg/L)	Resolution (±mg/L)	
NO ₃ -N	70	0.1	
тос	150	0.2	
DOC	90	0.2	

Continuous Water Quality Monitoring






Downstream Flume – Daily Sample


Downstream Flume - 15 minute sample interval

Downstream Flume

Downstream Flume

Challenges of Continuous Water Quality Monitoring

- Calibration
- Preventing/reducing window fouling
- Solar power

Future Research

- Continuously monitor:
 - pH
 - Conductivity/Salinity
 - Dissolved Oxygen
 - DOM Fluorescence

Future Research

For more information on our future work with organic matter see this poster:

Mikan et al., Chromophoric Dissolved and Particulate Organic Matter Cycling Through a Tidally Influenced Restored Marsh Ecosystem in Eastern North Carolina

Acknowledgements

- North Carolina Coastal Federation
- United States Environmental Protection Agency
- North Carolina Sea Grant/North Carolina Water Resources Research Institute
- North Carolina Ecosystem Enhancement Program
- NSF Graduate Research Fellowship Program
- Equipment Installation:
 - Spencer Davis
 - Brad Smith
 - Guillaume Lellouche
- Collaborators:
 - Dr. Chris Osburn NCSU Marine, Earth, & Atmospheric Sciences
 - Molly Mikan
- Others:
 - Phil Harris (Electronics)
 - Kris Bass (Installation and site design)
 - Evan Corbin (Previous research)

