

What is a tracer study?

Inject tracer

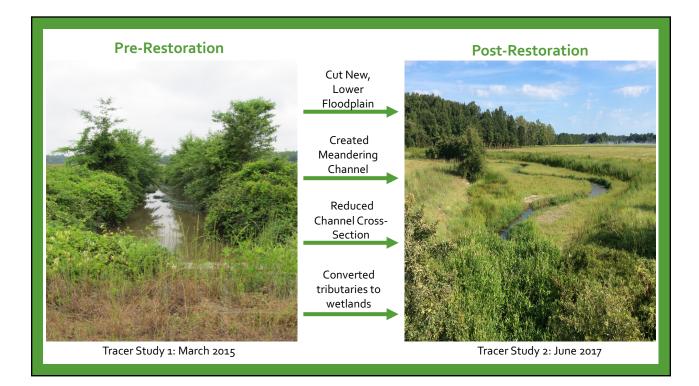
- Continuously and constantly inject of a well-mixed solution
 Pulse injection of solute
- Monitor downstream concentrations of solutes
- Utilize shape of breakthrough curves (BTCs) to characterize solute fate and transport

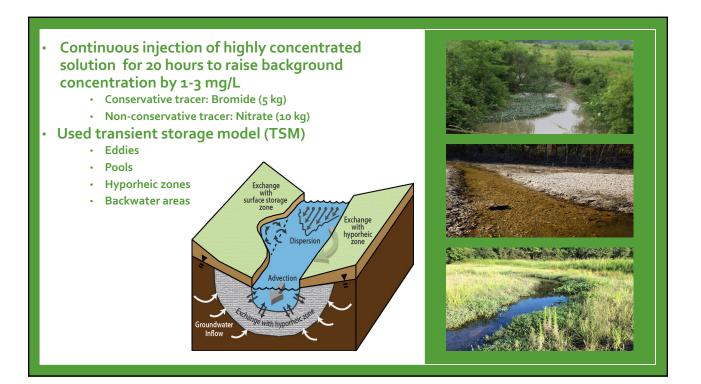
Study Objectives

Efficacy of Restoration

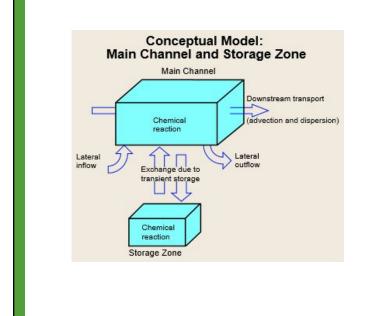
- Hydrologic processes
- In-stream NO₃⁻ uptake
- <u>Retention time</u>

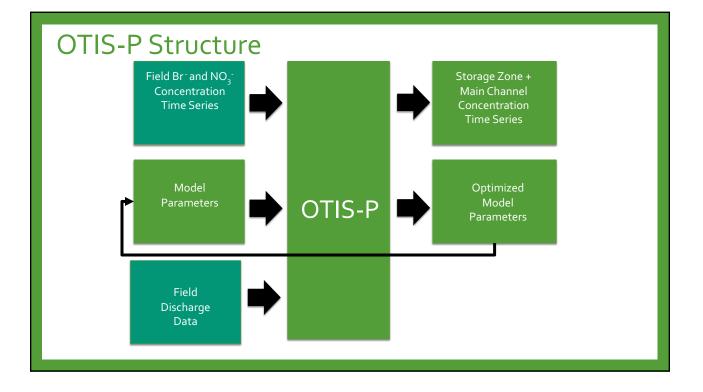
Tracer Methodology


- Transient storage model (TSM) parameter optimization and outputs at various temporal resolutions
- IC-SC methods
- <u>Novel techniques for NO₃-during tracer</u> <u>studies</u>



Case Study: Priority 2 Mitigation Project

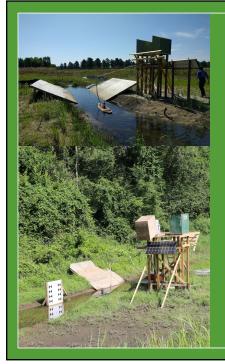

- Goldsboro, NC
 Neuse River Basin
- Land uses: **cropland**, pasture, developed land, **forestry**, grassland, and forest
- 3 jurisdictional streams
 - 10,587 linear feet stream restored
 - 31.8 acres riparian buffer



5

USGS OTIS-P Model


- Non-linear transient storage model
 - Hydrologic Transport
 - Advection
 - Dispersion
 - Lateral Inflow
 - Transient Storage
 - Chemical Transformation
 - First Order Decay
 - Sorption

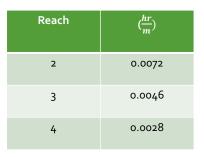


Field Data Collection Continuous, in-situ sensors + less frequent discrete samples					
Why? • Reduce cost of analysis	Sensor		Parameter(s) Measured	Measurement Interval	
 Increase reliability of BTCs Enhance model parameterization Simplify data collection How? Ion-Concentration-Specific-Conductivity (IC-SC) relationships Bromide Specific Conductivity Linear calibration between S::CAN and discrete samples Nitrate 	S::CAN spectro::lyser™ spectrophotometer		NO ₃ -	Pre: 4 min Post: 2 min	
	SonTek-IQ® acoustic doppler		Stage Velocity	Pre: 15 min Post: 15 min	
	Eureka Manta 2 [™] water quality sonde		Specific Conductivity	Pre: 5 min Post: 2 min	
	YSI® OMS-6oo conductivity probe	A	Specific Conductivity	Pre: 2 min Post: 2min	

Temporary Monitoring Stations

- Specific Conductivity
- Br Discrete Samples

Permanent Monitoring Stations


- Specific Conductivity
- NO₃⁻ sensor
- Discharge
- NO₃⁻ and Br discrete samples

Retention Time

Pre-Restoration

Post-Restoration

Reach	Main (<u>hr</u>)
1	0.0035
2	0.0087
3	0.0054
4	0.0033
5	0.0016

Different Phases of Recovery = Different Hydraulic Resistance

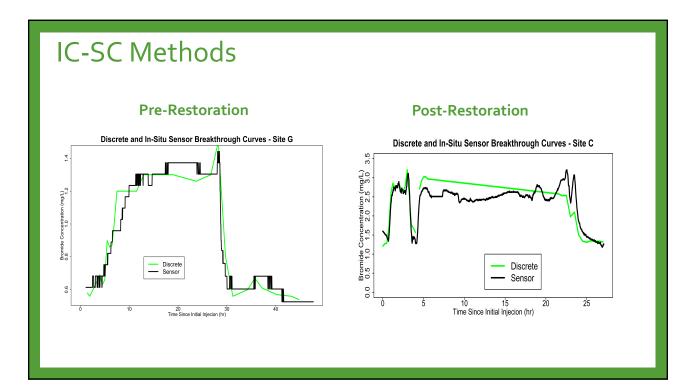
Transient Storage

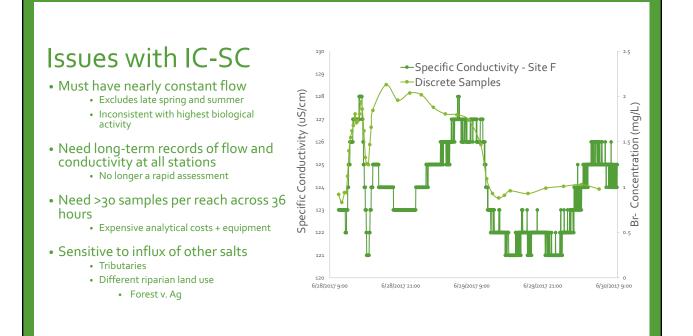
Pre-Restoration

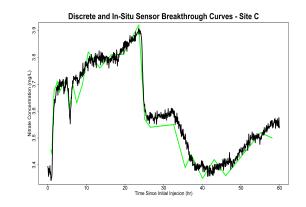
Reach	Storage Zone Main Channel
2	0.77
3	0.43
4	0.35


Post-Restoration

Storage Zone	
Main Channel	
5.35	
0.82	
1.07	
2.50	
3.66	


Increase in A_s/A after Restoration





Short-term NO₃⁻ Calibration

- NO₃⁻-sensor data consistently matched laboratory results
- Only requires 10 to 15 discrete samples were required for a strong sensor **linear** calibration
- Sensors were highly sensitive to changes in NO₃⁻ concentration

CONCLUSIONS

Pre-Restoration v. Post-Restoration

- Similar retention/length, but increased sinuosity suggests higher retention in post-restoration
- Lower retention/length in newer portions of the restored stream
- Consistently higher ratio of transient storage to main channel in restored stream
- Increased flow diversity in restored stream

Tracers for Evaluating Stream Restorations

- Evaluate well beyond 1 year after restoration implementation
- Avoid IC-SC methods for streams that have complex hydrology and mixed land use if long-term flow and conductivity data is not available
- Avoid IC-SC during warmer months if high-resolution discharge data is unavailable at all sampling points
- Focus resources on high quality, frequent discrete samples, rather than specific conductivity
- Use NO₃⁻ sensors (if available) to collect high quality concentration time series with minimal calibration required

