B Appendix B: Equilibrium Constants at 25°C

The equilibria and their constant values are borrowed from (Chameides and Perdue 1997) and (Stumm and Morgan 1996).

B.1 Equilibrium reactions in the H2O-H2-O2 system

Equilibrium reactions Log K
H+ + OH- ⇆ H2O -14.00
H+ + e- ⇆ H2(g) 0.00
H+ + e- + ¼O2(g) ⇆ ½H2O 20.78

H+: proton; OH-: hydroxide; H2(g): dihydrogen gas; O2(g): dioxygen gas; H2O: water

B.2 Equilibrium reactions in the CO2-H2O system

Equilibrium reactions Log K
CO2(g) ⇆ CO2(aq) -1.47
CO2(g) + H2O ⇆ H2CO3° -1.46
H2CO3° ⇆ H+ + HCO3- -6.36
HCO3- ⇆ H+ + CO32- -10.33
CO2(g) + H2O ⇆ H+ + HCO3- -7.82
CO2(g) + H2O ⇆ 2H+ + CO32- -18.15
CaCO3(calcite) + 2H+ ⇆ Ca2+ + CO2(g) + H2O 9.74

CO2: carbon dioxide; H2CO3°: this compound does not exist as such in nature… It corresponds to the combined CO2(aq) and the true carbonic acid H2CO3, such that [H2CO3°] = [CO2(aq)] + [H2CO3]. This expression H2CO3° in the equilibrium is preferentially used in chemistry because the amount of true carbonic acid in solution is about 1000 smaller than CO2(aq) (see further details in Chapter 11); HCO3-: bicarbonate (the prefix “bi-” is rather misleading and does not correspond to the number of negative charges, which would appear more logical nowadays, and corresponds to an outdated naming system); CO32-: carbonate; CaCO3: calcite mineral; Ca2+: calcium cation.

B.3 Equilibrium reactions for nitrogen species

Equilibrium reactions Log K
NO3- + 2H+ + e- ⇆ NO2(g) + H2O 13.03
½NO3- + H+ + e- ⇆ ½NO2- + ½H2O 14.32
⅓NO3- + 4/3H+ + e- ⇆ ⅓NO(g) + ⅔H2O 16.14
¼NO3- + 5/4H+ + e- ⇆ N2O(aq) + ⅛H2O 18.88
⅕NO3- + 6/5H+ + e- ⇆ ⅒N2(g) + 3/5H2O 21.05
⅛NO3- + 5/4H+ + e- ⇆ ⅛NH4+ + ⅜H2O 14.90
N2(g) ⇆ N2(aq) -3.21
NO(g) ⇆ NO(aq) -2.73
N2O(g) ⇆ N2O(aq) 0.54
NH3(g) ⇆ NH3(aq) 1.76
NH3(aq) + H+ ⇆ NH4+ 9.28

N2: dinitrogen; NO3-: nitrate; NO2(g): nitrogen dioxide; NO2-: nitrite; NO: nitric oxide; N2O: nitrous oxide; NH3: ammonia; NH4+: ammonium

B.4 Equilibrium reactions for phosphorus species

Equilibrium reactions Log K
H3PO4 ⇆ H2PO4- + H+ -2.12
H2PO4- ⇆ HPO42- + H+ -7.21
HPO42- ⇆ PO43- + H+ -12.67
H3PO3 ⇆ H2PO3- + H+ -2.00
H2PO3- ⇆ HPO32- + H+ -6.59

H3PO4: phosphoric acid; H2PO4-: dihydrogen phosphate; HPO42-: hydrogen phosphate ; PO43-: phosphate or orthophosphate; H3PO3: phosphonic acid (also phosphorous acid); H2PO3-: dihydrogen phosphite; HPO32-: phosphonate (or phosphite)

B.5 Equilibrium reactions for sulfur species

Equilibrium reactions Log K
H2SO4(aq) ⇆ H+ + HSO4- 1.98
HSO4- ⇆ H+ + SO42- -1.98
H2SO3(aq) ⇆ H+ + HSO3- 1.91
HSO3- ⇆ H+ + SO32- -7.18
H2S(g) ⇆ H2S(aq) -0.99
H2S(aq) ⇆ H+ + HS- -7.02
HS-~ ⇆ H+ + S2- -12.90
⅛SO42- + 5/4H+ + e- ⇆ ⅛H2S(g) + ½H2O 5.25
⅛SO42- + 9/8H+ + e- ⇆ ⅛HS- + ½H2O 4.25
⅙SO42- + 4/3H+ + e- ⇆ ⅙S(s) + ⅔H2O 6.03
½S(s) + H+ + e- ⇆ ½H2S(g) 2.89
α-FeS(trolite) ⇆ Fe2+ + S2- -16.21
FeS2(pyrite) ⇆ Fe2+ + S22- -26.93



appendix still under construction




References

Chameides, William L, and Edward M Perdue. 1997. Biogeochemical Cycles: A Computer-Interactive Study of Earth System Science and Global Change. Edited by W L Chameides. The Computer-Based Earth System Science Series. Oxford University Press. https://market.android.com/details?id=book-qDuFC0uXt_QC.
Stumm, Werner, and James J Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley. https://market.android.com/details?id=book-xvZOAAAAMAAJ.